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Fingertip-based Feature Analysis for the Push
and Stroke Manipulation of Elastic Objects

Megumi Nakao, Member, IEEE, Masayuki Senoo, and Tetsuya Matsuda, Member, IEEE

Abstract—In this study, to quantitatively understand finger operations used to manipulate elastic objects, we explore robust
fingertip-based feature descriptors that are invariant to operator, finger position, and target object. To measure the tactile information
generated when an object is directly touched by a fingertip, we used a wearable system that enables the simultaneous measurement of
fingertip position and strain without inhibiting the operator’s sense of touch. This paper focuses on the quantitative classification of the
push and stroke operations of a single finger, and conducted user experiments to obtain time-series fingertip position and strain from
10 subjects touching nine types of elastic objects. The recognition rate was investigated by binary classification using a support vector
machine and cross validation. The results show that the two-dimensional features obtained from fingertip position and strain within a
0.9-s time frame can stably recognize push and stroke operations on elastic bodies of different shapes, stiffnesses, and thicknesses at
a higher recognition rate.

Index Terms—Fingertip-based recognition, haptic interaction analysis, finger manipulation, wearable sensor
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1 INTRODUCTION

HUMAN beings perceive the world through their fingers,
and through delicate and complex finger movements,

skillfully manipulate objects of a wide variety of shapes
and materials. The tactile information generated between
fingers and an object plays a major role in determining the
appropriate finger operation and is an important indicator
for quantitatively understanding the finger operation mech-
anism [1], [2], [3], [4], [5]. In the medical field, there have
been attempts to develop technical training and educational
systems for finger operations that require advanced levels
of knowledge and experience such as the use of surgical
tools for palpation and endoscopic surgery [6], [7], [8], [9].
In robotics, sensory information gained by humans during
finger operations has been measured and analyzed [10], [11],
[12], [13], [14], [15]. The objective of such research is to
advance the control and design of manipulators [16], [17],
[18] capable of performing actions similar to or even more
accurate than human finger operations.

Tactile information can be sensed by a body part di-
rectly touching an object. Compared with kinematics or
hand/finger motion [19], [20], [21], [22], which can be cap-
tured using optical tracking or magnetic sensors, measuring,
analyzing, and sharing natural finger manipulation using
haptic feedback is not simple. Virtual reality (VR) simulators
have achieved haptic interaction with a virtual model using
a force feedback device. The ability to generate artificial
haptic feedback (e.g., tactile illusion) enables the investiga-
tion of human perception [2], [23], decision making [24],
and mechanisms of dexterous manipulation [25], [26]. In the
medical field, there have been efforts [7], [8], [27] to develop
VR simulation systems wherein organ manipulation via pal-
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pation and surgical tools can be experienced in simulation as
surgical training for doctors. VR systems in which multiple
people can simultaneously touch the same location of a
virtual object enables tactile information to be shared with
other people [28]. In these studies, by constructing a virtual
object model that suitably reflects the three-dimensional
(3D) form and mechanical properties of the target object,
it becomes possible to measure and quantitatively analyze
simulated finger operations. However, there are differences
between artificial reality and the real world. Because it is
not easy to accurately reproduce the texture and elastic
properties of real objects, the divergence between vision and
sense of touch during finger operations is not negligible.

Many studies have attempted to directly measure hand
operations associated with actual objects to better share
tactile information. By measuring the force generated along
with the 3D position and posture of the fingertips when
an actual object or tool is touched, tactile information can
be quantitatively measured [24], [29]. However, previous
studies using such methods had to embed measurement
sensors in the object [30] or attach sensors to the palms or
fingertips [21], [31], [32], [33], [34]. Although it is possible
to directly embed sensors in the object, the measurable area
is limited and the object’s force features may be affected by
the sensors. In the latter method, while the measurable area
is not limited, the sensor attached to the palm or fingertips
may interfere with finger sensations during operations [34],
[35]. Measuring the tactile information obtained when an
actual object is touched in an environment in which natural
finger operations are possible remains a challenge, and the
measurement and analysis of finger operations on actual
objects are still limited.

In this study, our aim is to quantitatively examine finger
operations that target actual objects. We hence construct a
finger operation measurement system that does not inhibit
fingertip sensation. We furthermore conduct a quantita-
tive analysis of multidimensional features in experimentally
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measured finger operation data. According to the previous
literature [36], hand movement can be categorized into eight
types of motion patterns: lateral motion, pressure, static
contact, unsupported holding, enclosure, contour following,
function test, and part motion test. This paper focuses on
fingertip-based classification of the two fundamental ac-
tions, lateral motion and pressure, on a fixed elastic object.
We assume that one possible application of this feature
selection is a quantitative understanding of finger opera-
tion by medical experts. Push and stroke operations with
one finger are a basic, essential skill for medical palpation
procedures [7], [8]. Medical experts use different finger
operations depending on the location and the shape of
the target organs. The relationship between fingerpad state
and decision-making would contribute to understanding
the skills of fingers, and will be useful for developing train-
ing scenarios or dexterous robotic system design. Another
application of finger operation recognition is to use the
finger-attached wearable sensor as novel tangible interface
for computers. A variety of input styles using real-world
objects has been considered [37], [38]. Integrating wearable
sensors and finger operation recognition will bring us one
step closer to such ubiquitous input environments.

For the analysis of dexterous manipulation across the
human and robotic domains, Bullock et al. presented a
hand-centric classification scheme [14]. Makino et al. [39]
proposed a life log system to record fingertip information
in our daily lives. However, to the best of our knowledge,
few studies have focused on the fingertip-centric recognition
of haptic interaction with real-world elastic objects. As a
first step toward a fingertip-based classification scheme, this
study focuses on push and stroke operations with relatively
detailed motion on a small region of an elastic object. To
reduce the complexity of classification, the overall hand
motion including wrist and palm motion was considered to
be out of scope of this paper. In spite of this simplification, a
variety of applications can be considered because push and
stroke operations are recognized by recent touch interfaces.
Because similar fingertip-based input styles are used for
most desktop tasks, real-world deformable objects with any
shape could become a touch screen [37], [40], [41] if wearable
fingertip sensors are used. Push and stroke operations are
also used to recognize stiffness, texture, and elasticity of
the target object, not to move or change its orientation.
Palpation by surgeons or medical practitioners is a clinically
practical example and is used to localize tumors [13], [27] for
diagnosis or decision-making during surgery [7].

Based on these motivations, if the intended touch inter-
action on fixed objects with a fingerpad is possible without
obstructing the sense of touch, we consider that ”natural”
finger operation has been achieved in this study. To identify
and understand push and stroke interaction with an index
finger, we focus on measuring the fingertip while touching
different types of elastic objects. Specifically, our interest is
the exploration of low-dimensional robust descriptors that
are invariant to finger position, target shape, and physi-
cal properties. The direction of this study, therefore, is to
address the following issues by quantitatively analyzing
single-finger push and stroke operations:

• Measurement of natural finger operations using a

single finger and actual objects
• Exploration of robust feature descriptors that are in-

variant to operator, finger position, and target object
• Quantitative classification of push and stroke opera-

tions for actual objects with different shapes, materi-
als, and stiffnesses

To measure natural finger operations used to touch
elastic objects, we constructed an experimental system in
which fingertip strain and 3D fingertip position could be
simultaneously measured without inhibiting fingertip sen-
sation. Experiments were conducted with 10 subjects using
various types of elastic bodies, and the multidimensional
feature values of push and stroke operations were inves-
tigated. Based on the determined feature sets, operations
were classified using a support vector machine (SVM) and
cross validation. The performance of the calculated decision
boundaries to classify push and stroke operations was eval-
uated.

2 MATERIALS AND METHODS

2.1 Measurement system

To analyze natural human finger operations, we focused on
the simultaneous measurement of 3D position and fingertip
strain, key factors that affect the sense of touch when the
operator touches actual objects. For the finger operation
measurement, therefore, we reproduced the following mea-
surement environment:

• No object or physical restrictions on the movement
of the operator or fingertip operation

• Simultaneous measurement of fingertip strain and
position without depending on the operator’s pos-
ture

• No device attached to the fingerpad section and no
obstruction of the operator’s sense of touch on the
fingerpad.

To realize measurements satisfying these conditions, we
designed a fingertip position and strain measurement sys-
tem, as shown in Figure 1a. For strain, we used a HapLog
(Tec Gihan Co., Ltd., JAPAN) with 16-bit resolution to
measure the deformity of the fingerpad in the horizontal
direction. The HapLog device does not cover the fingerpad;
thus, it does not obstruct the operator’s fingertip sensation
or sense of touch [35], [42]. To measure fingertip position,
we used a 3D Guidance MedSAFE sensor (Ascension Tech-
nology Corporation, USA), a compact magnetic position
sensor that can detect 3D positions with a resolution of
0.5 mm and a root-mean-square error of 1.4 mm [34]. We
considered the use of an on-board accelerometer for the
HapLog, but we found there was considerable noise in
the position and velocity computation using the measured
acceleration values when small finger manipulations were
applied to elastic objects. Because we targeted millimeter-
order finger operations, an accurate positional sensor with
sufficient spatial resolution is suitable for the purposes of
these experiments. We also considered other optical and
mechanical measurements; however, optical systems tend
to be influenced by occlusion of the object or adjacent
fingers when the object is touched by the fingertip. Finger
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Fig. 1. Measurement system and workspace for capturing finger operation: a) wearable position/strain sensor designed to capture natural finger
operation without obstructing the sense of touch, b) workbench with the transmitter for the magnetic position sensor, and c) push operation test
using a wooden cube.

movement is often limited in other mechanical systems.
Thus, for this study, we adopted a magnetic motion capture
system, which is not affected by occlusion and does not limit
finger movement.

By mounting the magnetic position sensor on top of
the strain sensor, strain and fingertip position can be mea-
sured without obstructing the operator’s finger movement
or sense of touch. We constructed a workbench to affix the
transmitters needed to generate the magnetic fields of the
magnetic position sensor. The relative positions of the trans-
mitter and workbench as well as the workspace coordinates
used during the experiments are shown in Figure 1b. Using
software we created for synchronous sampling, the 3D fin-
gertip position p(t) = (x(t), y(t), z(t)) and strain value ε(t)
were simultaneously recorded at sampling intervals of 30
ms. Figure 1c shows an instance wherein the measurement
sensor is attached to the index finger of the experimenter
while the top of a wooden cube is pushed. Fingertip velocity
v(t) was calculated from p(t), and normalized strain εn(t)
was calculated based on

εn(t) = 100× (ε(t)− ε0)/(ε1 − ε0) (1)

where ε0 is the threshold value used to detect physical
contact between the finger and the object, and ε1 is the ref-
erence value calibrated per an operator when a 1000-g push
operation is applied to an electronic scale with the index
finger. We note that the fingerpad deforms because of the
bending of joints and tension on the fingertips even when
the operator does not directly touch an object. Furthermore,
the values received from the strain sensors differ greatly
depending on the shape and size of the operator’s fingers.
Because this study aimed to analyze features of finger oper-
ation when a finger manipulates an object, contact between
the finger and object was detected. It was also necessary to
reduce the impact on the measurement data caused by the
difference in finger shape between operators. Thus, a 10-s
calibration procedure was performed in advance and the
fingertip strain when performing translation, rotation, and
bending finger operations in free space (i.e., a non-touching
state) was measured. The start and end points of an opera-
tion on the actual object were determined using ε0 = µ+3σ,
where µ is the average value and σ is the standard deviation
of the strain obtained from the calibration procedure.

Figure 2
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Fig. 2. Contact detection using normalized strain data. Contact is deter-
mined when the normalized strain values of the past w samples are all
positive.

An example of the transition in strain values ε(t) when
starting a push operation on an elastic object is shown in
Fig. 2. Using window width parameter w, a contact state is
determined when the normalized strain values of the past
w samples are all positive, which is defined by

εn(t− k∆t) > 0 (∀k ∈ N, 0 ≤ k ≤ w − 1) (2)

The measured data in the contact state are the target of the
feature value calculation. As the sampling interval ∆t is 30
ms in this study, in the case of w = 10, for instance, 10
samples in the 300 ms are used for contact detection and for
feature value calculation.

2.2 Elastic objects
To measure finger operations used to manipulate multiple
elastic materials, the elastic bodies with different shapes,
materials, and stiffnesses shown in Figure 3 were used as
operation targets. Three types of low-resilience urethane (10-
, 20- and 30-mm-thick) and four types of gel (hard cuboid,
soft cuboid, soft hemispherical, and soft triangular prism)
were prepared. To quantitatively confirm the stiffness of
these elastic bodies, we measured Young’s modulus us-
ing the YAWASA stiffness measurement device (Tec Gihan
Co., Ltd., JAPAN). Young’s modulus was 47.48 kPa, 79.36
kPa, and 285.2 kPa for low-resilience urethane, soft gel,
and hard gel, respectively. Considering that that Young’s
modulus for the silicone rubber and wooden materials was
approximately 1×104 kPa and 1×107 kPa, respectively, we
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Figure 3
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Fig. 3. Elastic objects with different shapes, materials, and stiffnesses.
Three groups of elastic objects with A) different thicknesses, B) different
stiffnesses, and C) different shapes were prepared for the experiments.

can see that these three types of elastic bodies are all soft
materials. In the experiments, nine elastic objects: A) three
with different thicknesses, B) three with different stiffnesses,
and C) three with different shapes were used. Note that
the bottom surface of the target object was fixed to the
workbench during the measurement process.

2.3 Multidimensional Feature values
One of the challenges in this study is to robustly identify
natural operations on various types of elastic objects using
the strain and velocity of a fingertip. Figure 4 shows the
typical time changes of normalized strain εn(t) ∈ R and
velocity v(t) ∈ R for a fingertip performing push and stroke
operations. There are large differences between the push
and stroke operations in Fig. 4a. In the push operation, the
fingers and object come into contact, whereas this contact
transitions with a value close to 0 in time band v(t). When
εn(t) is large during the stroke operation, we can confirm
from the v(t) behavior that the finger movement occurs
because of the stroke operation in the time frame over which
the finger touches the object. Time variations for εn(t) and
v(t) for the push and stroke operations on the hemispheric
gel are shown in Fig. 4b. Relative to Fig. 4a, little differ-
ence is observed, and interestingly, the magnitude of the
normalized strain during the push operation is relatively
smaller than that during the stroke operation. Furthermore,
if we compare the measured data obtained from the stroke
operation in Fig. 4a and the data from the push operation in
Fig. 4b, no major difference can be found. These results come
from the natural variation of a subject’s finger operations
when touching different elastic objects. Our aim in this
study was to investigate whether quantitative classification
of the push and stroke operations from these measured data
is possible.

To quantitatively analyze natural finger operations, we
focused on robust feature values that are invariant to finger-
tip position, orientation, and operation target. In this study,
the following four candidate feature values were selected
and calculated from the time-series measured data.

• Moving average of velocity: va(t, w)
• Standard deviation of velocity: vσ(t, w)
• Moving average of normalized strain: εa(t, w)
• Standard deviation of normalized strain: εσ(t, w)

where w is the width of the time-frame window. Obviously,
it is difficult to classify push and stroke operations from
measurement values taken at a single point in time. Multi-
dimensional feature values that can be extracted from the
measured data over time frames of width w in the contact
state were used. The selected feature values were calculated
using the following equations:

va(t, w) =
w−1∑
k=0

v(t− k∆t)

w
(3)

vσ(t, w) =

√√√√w−1∑
k=0

{v(t− k∆t)− va(t, w)}2
w

(4)

εa(t, w) =
w−1∑
k=0

ε(t− k∆t)

w
(5)

εσ(t, w) =

√√√√w−1∑
k=0

{ε(t− k∆t)− εa(t, w)}2
w

(6)

The multidimensional strain and velocity information on
a fingertip within specific time frames should efficiently
evaluate finger operations. Specifically, we hypothesized
that a human’s push and stroke operations can be classified
by low-dimensional features of the fingerpad information.
These values are invariant to finger position, target shape,
and physical properties. To explore low-dimensional, ro-
bust feature sets and their classification performance, we
designed user experiments to measure natural finger oper-
ations on elastic objects. As the best window parameter w
for identifying push and stroke operations for a variety of
objects is not evident, w was selected based on a statistical
analysis, i.e., the classification performance for the measured
data obtained from the experiments.

3 EXPERIMENTS AND RESULTS

3.1 Experimental procedures
Ten healthy subjects (1/10 females, all right-handed, 23± 2
years old, mean± SD) participated in the experiment. In
accordance with the ethical guidelines of Kyoto University
for research involving human subjects, all participants gave
informed consent to participate in the study.

In the experiment, each participant wore the posi-
tion/strain sensor on his/her index finger and executed
push and stroke operations on the elastic objects. The sub-
jects freely manipulated the objects in one operation, which
was repeated five times while changing the method of
touch. Three-dimensional fingertip position p(t) ∈ R3 and
strain ε(t) ∈ R were measured using the measurement sys-
tem. Nine types of elastic objects shown in Fig 3 were used
to investigate the robustness of the proposed feature values.
The initial device setup, a short practice, calibration, and
measurements were performed according to the following
procedures.
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Fig. 4. Typical measured strain and velocity of a fingertip over time when touching (a) cuboid low-resilience urethane and (b) a hemispheric gel five
times.

• The operator sat in a chair facing the elastic ob-
ject placed on the workbench. The height of the
chair was adjusted so that the operator could freely
push/stroke the surface of the elastic objects.

• The operator attached the measurement sensor to the
index finger on the right hand.

• For hand operations with the measurement sensor
attached, a practice time of 10 s was allowed for the
first target elastic body to confirm that the fingertip
senses of the operator were not obstructed.

• To determine contact detection threshold ε0, fingertip
strain was measured for 10 s when executing parallel
finger pointing and rotation operations.

• To normalize the strain values, strain value ε1 was
measured for a 1000-g push operation with the index
finger using an electronic scale.

• Fingertip position p(t) and strain ε(t) for the push
and stroke operations for the surface of each elastic
body were measured five times.

When conducting the push and stroke operations, each
operator was instructed to change the contact position,
finger pressure, fingertip movement direction, and amount
of fingertip movement on the surface of the elastic body.
Each operator was also instructed to perform the actions
that they considered to be “push” and “stroke” operations.
The order of operations for each operator was determined
by a standard Latin square design, i.e., a different order for
operators, to eliminate any order effects.

3.2 Feature values of finger operations

Quantitative analysis was performed to determine feature
descriptors that are better able to classify push and stroke
operation with haptic feedback. Type A objects, i.e., three
types of low-resilience urethane with different thickness, as
shown in Fig. 3, were selected as the operation targets. To
investigate the classification performance of these feature
values, we first focused on characteristics of the 2D feature
sets: one chosen from normalized strain and the other from
velocity.

Figure 5a shows the 2D plot of the typical feature sets
(va, εa), (vσ, εa), (va, εσ), and (vσ, εσ) calculated from the
measured data using w = 30. Figure 5b shows the 2D
plot of feature set (vσ, εa) for each w value. Parameter w,
which is the width of the window that evaluates the time-
series measured data, was set to 40, 30, 20, and 10. The
differences in the number of feature value plots according
to the value of w are due to the differences in contact
detection. Window widths w = 40, 30, 20 and 10 required
1.2, 0.9, 0.6 and 0.3 s, respectively, to detect contact because
a contact state was identified when ε(t) > ε0 were satisfied
for all ε(t) within the window. Therefore, smaller w values
result in larger sampled feature sets. As each feature value
is determined by fewer measurement values over a short
period of time, the feature values become sensitive to finger
operation. In contrast, as w increases, more sampled data
are used for contact detection, and the number of feature
values extracted from the measured data of each subject
decreases. We can confirm these characteristics of sampled
feature values in Fig 5b.

Table 1 shows the recognition rates of the four feature
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Figure 5
push ○ 10mm ○ 20mm ○ 30mm
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Fig. 5. Examples of feature value distribution on normalized strain and velocity in push and stroke manipulations: (a) 2D plot of different feature sets
with time window width w = 30 and (b) 2D plot of feature set (vσ , εa) with different time window widths.

values for each of the four w values. The classification
results were computed by binary classification using an
SVM and 10-fold cross validation for each subject. The ten
datasets were divided into nine training datasets and one
test dataset. The decision boundary was computed from the
nine training datasets, and then applied to the test dataset.
The same procedure was conducted for all (ten) patterns of
training/test datasets while changing the test dataset. This
validation can determine cross-subject recognition rates for
all subjects, and all patterns of test data were equivalently
analyzed. The highest push and stroke operation detection
rate was obtained when using va(t, w) and εσ(t, w). In terms
of recognition rate for each subject, the lowest recognition
rate (w = 10 : 69.37%, w = 20 : 73.95%, w = 30 : 77.66%,
andw = 40 : 80.07%) was obtained when the feature set (va,
εσ) was used as test data. When using other feature value
sets, the recognition rates were even lower. Therefore, the
combination of va(t, w) and εσ(t, w) was considered to be
the most suitable for classifying push and stroke operations.

We next determined the optimal w value for classifying
push and stroke operations. When va(t, w) and εσ(t, w)
were treated as feature values, smaller w values decreased
the recognition rate. In contrast, smaller w leads to a
finger operation classification system with higher sensi-
tivity and short computation time. We hypothesized that
a human’s push and stroke operations can be classified
by low-dimensional features of the fingerpad information.
Although achieving a higher recognition rate is desirable,
maximizing the recognition rate and the minimizing the
time frame for evaluation is a trade-off. Because the exper-
iments showed one motion for a push or stroke operation
ranges from 1 to 3 s, w = 30 was considered to be a good
value for recognizing finger operations. The detection rate
was greater than 90% when w = 40 (91.16%) and w = 30
(90.34%), which are both acceptable values for classifying

operations. Thus, the 2D feature set va(t, w) and εσ(t, w)
with window width w = 30 should perform well and be
suitable for finger operation analysis.

TABLE 1
Recognition rates for different combinations of feature sets and time

window parameters.

w = 40 w = 30 w = 20 w = 10

(εa, va) 86.64 86.90 83.90 77.88
(εa, vσ) 69.21 71.58 72.08 68.39
(εσ , va) 91.16 90.34 88.10 83.14
(εσ , vσ) 79.38 81.03 80.65 77.44

3.3 Robustness of feature values

The goal of the analysis in this experiment was to investigate
the classification accuracy of the push and stroke opera-
tions for multiple elastic bodies of different thicknesses,
stiffnesses, and shapes. We analyzed the finger operation
measurement values for 10 subjects on nine types of elastic
bodies, as shown in Fig. 3. Type B objects were cuboids
(22-mm-thick) constructed from low-resilience urethane, gel
(soft) and gel (hard), i.e., only the stiffness varied. To reduce
differences in the sense of touch on the surface due to the
materials, type B objects were covered in a wrap during the
finger operation measurement. Type C objects had different
shapes, i.e., cuboid, hemispheric, and triangular. All type C
objects were constructed from soft gel.

To examine the robustness of the feature set (va, εσ), with
w = 30 as selected by the previous experiments, the next
experiments confirmed the recognition rates for all fifteen
combinations of feature sets (F1–F15) defined by 4D features
(va, vσ, εa, εσ) were considered. The naming convention for
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Figure 6
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Fig. 6. Comparison of classification performance. Two-dimensional feature sets using velocity and strain values outperformed 1D features.
Specifically, F7 shows the best performance in the 2D feature group, and a significant difference was found between F7 and the other 2D features.
Furthermore, F12, F13, F14, and F15 also achieve recognition rates of more than 90%. However, there are no significant differences between F7
and these higher dimensional features. These results suggest that the combination of velocity and strain values is a good feature descriptor for
classifying push and stroke operations.

the feature sets is given in Table 2. Similar to the previ-
ous analysis, the recognition rate was calculated from the
measured data on all nine elastic objects for each subject.
This experimental setting also provides comparative results
between the performance of the proposed multidimensional
features and that of other recognition approach with a 1D
feature. In this experiment, 90% was used as the target
recognition rate.

TABLE 2
Naming convention for multidimensional feature sets.

dimension name feature sets
1D feature F1 (va)

F2 (εa)
F3 (vσ)
F4 (εσ)

2D features F5 (va, εa)
F6 (va, vσ)
F7 (va, εσ)
F8 (εa, vσ)
F9 (εa, εσ)
F10 (vσ , εσ)

3D features F11 (va, εa, vσ)
F12 (va, εa, εσ)
F13 (va, vσ , εσ)
F14 (εa, vσ , εσ)

4D features F15 (va, vσ , εa, εσ)

Figure 6 shows the classification results obtained using
SVM learning and 10-fold cross validation. The average
recognition rate of 1D features were around 50% chance
level, which mean a single feature of velocity or strain
fails to discriminate push and stroke operations. The aver-
age recognition rates of 2D feature sets outperformed the
1D features. Specifically, the combination of the velocity
and strain values achieve better performance. Specifically,
F7 shows the best performance in the 2D feature group.
Significant differences were found between F7 and 1D
features by one-way analysis of variance (ANOVA, p <
0.05 significance level): F1 (F(1,18)=250.9), F2 (F(1,18)=59.3),
F3 (F(1,18)=43.9), and F4 (F(1,18)=30.4). Significant differ-
ences were also found between F7 and 2D features: F6

(F(1,18)=6.1), F8 (F(1,18)=21.3), F9 (F(1,18)=15.1), and F10
(F(1,18)=16.5). Regarding higher dimensional feature sets,
F12, F13, F14, and F15 also achieved a recognition rate of
more than 90%. However, the average recognition rate is
still around 90%, and there are no significant differences
between F7 and these feature sets. These comparison results
suggest that the combination of velocity and strain values
is a good feature descriptor for classifying push and stroke
operations.

The recognition rate calculated from cross validation of
the classification results for each subject is shown in Fig.
7a. An average recognition rate of 91.2% was obtained,
which is higher than the detection rate for the previous
analysis using SVM learning with type A objects only
(90.3%). Furthermore, in terms of the recognition rate for
each subject, we can confirm, with an accuracy rate of 80%
or more for each subject, that the operation classification was
stably successful. Figure 7b shows the accuracy rate with the
respective measurement values for the nine elastic bodies.
The labels on the x-axis of the figure are the ID numbers
assigned to the elastic bodies shown in Fig. 3. The average
recognition rate was 91.4%. As the recognition rate for each
operation target was 80% or more, we can confirm that it
robustly classified push and stroke operations.

4 DISCUSSION

It is not easy to quantitatively analyze the tactile information
obtained by humans when they directly touch an object.
The proposed measurement system addresses this issue
and enables simultaneous measurement of finger position
and fingertip strain without inhibiting the sense of touch.
In this context, this study is the first attempt to perform
a quantitative analysis based on the tactile information of
natural finger operations. We focused on the quantitative
classification of single-finger push and stroke operations,
and found that the 2D features of fingertip position p(t)
and strain ε(t) with a 0.9-s time frame (w = 30) could
achieve good classification performance. Figs. 7 and 8 show
that using va(t, 30), εσ(t, 30), even with push and stroke
operations on elastic bodies of different forms, stiffnesses,
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Figure 7

(a) (b)

Fig. 7. Classification performance of feature set F7: (a) recognition rates for different subjects and (b) recognition rates for different operation targets.

Figure 6

(a)

push
□ urethane
□ gel(0)
□ gel(5) 

stroke
□ urethane
□ gel(0)
□ gel(5)

push
△ rectangular
△ hemisphere
△ slope

stroke
△ rectangular
△ hemisphere
△ slope

(b)

Fig. 8. Decision boundary obtained from SVM learning: data for (a) operator 1 and (b) operator 2. Regardless of the stiffness and shape of the
target elastic objects, the feature set can classify push and stroke operation with small recognition errors.

and thicknesses, classification can be achieved with a high
recognition rate. The recognition rate (91.20%) for the nine
types of elastic objects was higher than that for type A
objects (90.34%). As the number of elastic bodies targeted
for operation increased, the number of data used as train-
ing data increased. This demonstrates that the increase in
amount of training data improved the reliability of the
calculated linear decision boundaries.

Feature set va(t, 30) and εσ(t, 30) for operator 1 is plotted
in Fig. 8a. In the figure, different markers are assigned to
the feature values obtained from different types of elastic

objects. The figure shows that irrespective of the stiffness
and shape of the target object, the feature values for the
push and stroke operations form a cluster concentrated
within a certain area. It also demonstrates that a linear
decision boundary can classify the data into two categories
with low classification error. Fig. 8b shows another 2D plot
of va(t, 30), and εσ(t, 30) for operator 2. We chose these
two examples because they showed remarkable differences
from the viewpoint of operations. The feature data of op-
erator 1 are widely distributed for both push and stroke
operations; thus, we can confirm that the finger operations
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are significantly different. Operator 1 pushes with a large
motion and operator 2 pushes with relatively small mo-
tion. Regardless of the stiffness and shape of the target
elastic objects, the feature values for the push and stroke
operations form clusters similar to those of operator 1.
Figure 7a shows that the recognition rate for operator 2 was
lowest. The several plots indicated by the three arrows in
Figure 8b are misclassified results. Actually, the motion of
operator 2 was the smallest of the subjects. This suggests
a natural fact that it is more difficult to identify smaller
motions, and this is considered to be a limitation of the
proposed recognition framework. Another possible reason
for the recognition errors may come from the elasticity of the
fingerpad. The relationship between fingerpad stiffness and
recognition rate is an interesting topic. The exploration of
a nonlinear decision boundary to improve the classification
performance is also an important topic for further study.

Regarding the limitations of this study, it concentrated
on a quantitative analysis of only simple push and stroke
operations using a single finger. The evaluated shapes and
material properties are also a limitation of this experiment.
As the elastic test objects required high reproducibility, we
prepared six types of elastic objects with different shapes
and stiffness as a first trial for finger operation recogni-
tion. To show the sufficiency of the selected feature values
requires additional object variations. More complex finger
operations and objects should reduce the recognition rate.
On the contrary, through closer scrutiny of the feature
values extracted from the finger operation measurement
values, an increase in the amount of training data from more
measurement values is expected to lead to a broader range
of detectable finger operations.

Quantitatively classifying natural human finger opera-
tions is expected to lead to applications in various fields.
For example, it is expected that this will lead to an essential
understanding of dexterous finger operations using sense
of touch. The findings may be also useful for diagnosis of
finger operations with haptic feedback [29] and the design
of autonomous robotics manipulators capable of perform-
ing actions similar to human finger operations [11], [12].
Furthermore, it is also considered a valid novel interface
for applications that use finger operations on actual objects
as input [30], [37], [40]. More specifically, it is possible
that quantitative information from finger operations could
replace touch interfaces. For instance, by using the fact that
the push/stroke performed by the user can be discriminated
based on the deformation and speed of the fingertip, it
is possible to have various shapes and materials such as
rubber and cloth without restricting operation to current
dedicated touch screens. Touch on any real object can be the
input for a computer using HapLog-like wearable devices.
Based on these contexts and further applications, we believe
that analyzing common fingertip features not dependent on
the shape and material of the object will be an interesting
topic. Future work is necessary to investigate more complex,
dexterous operations with multiple fingers. We believe that
the developed measurement system design and experimen-
tal procedures can be applied to a systematic understanding
of specialized human operations.

5 CONCLUSION

To quantitatively understand natural finger operations used
to manipulate elastic objects, this study explored low-
dimensional robust feature descriptors that are invariant to
operator, finger position, and target object. We developed
a wearable system that enables the simultaneous measure-
ment of fingertip position and strain without inhibiting the
operator’s sense of touch. User experiments were designed
to obtain time-series fingertip position and strain from 10
subjects touching nine types of elastic objects, and the quan-
titative classification of the push and stroke operations of
a single finger was investigated. The results show that the
two-dimensional features obtained from fingertip position
and strain within a 0.9-s time frame can stably recognize
push and stroke operations on elastic bodies of different
shapes, stiffnesses, and thicknesses at a higher recognition
rate.
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